作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we construct and implement a new architecture and learning method of customized hybrid RBF neural network for high frequency time series data forecasting. The hybridization is carried out using two running approaches. In the first one, the ARCH (Autoregressive Conditionally Heteroscedastic)-GARCH (Generalized ARCH) methodology is applied. The second modeling approach is based on RBF (Radial Basic Function) neural network using Gaussian activation function with cloud concept. The use of both methods is useful, because there is no knowledge about the relationship between the inputs into the system and its output. Both approaches are merged into one framework to predict the final forecast values. The question arises whether non-linear methods like neural networks can help modeling any non-linearities being inherent within the estimated statistical model. We also test the customized version of the RBF combined with the machine learning method based on SVM learning system. The proposed novel approach is applied to high frequency data of the BUX stock index time series. Our results show that the proposed approach achieves better forecast accuracy on the validation dataset than most available techniques.
推荐文章
ARIMA与RBF复合模型在设备运行状态趋势预测中的应用
运行状态
趋势预测
复合模型
ARIMARBF
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
大功率晶体管BUX10的退化试验与特性分析
大功率晶体管
参数退化
退化数据
可靠性评估
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Hybrid ARIMA/RBF Framework for Prediction BUX Index
来源期刊 电脑和通信(英文) 学科 医学
关键词 High FREQUENCY Data STATISTICAL Forecasting MODELS RBF NEURAL Networks Machine Learning
年,卷(期) 2015,(5) 所属期刊栏目
研究方向 页码范围 63-71
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
High
FREQUENCY
Data
STATISTICAL
Forecasting
MODELS
RBF
NEURAL
Networks
Machine
Learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导