基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着数据处理方式以及描述角度的不同,同一模式总是能够获得多种不同的特征表示。由于这些特征表示总是反映了同一模式的不同特性或视角,因此,对其进行有效地抽取与融合后,不仅可以保留参与抽取的多组特征的有效鉴别信息,还可以在一定程度上消除特征间的冗余信息,降低识别算法的复杂度,对模式分类来说无疑具有重要的实际意义。由于传统的维数约减方法,如主成分分析(PCA)与线性鉴别分析(LDA),主要针对模式的一组特征进行处理,并不适合对多表示数据进行融合与特征抽取,因此,本文以多表示数据为研究对象,深入研究了多重集典型相关分析的相关理论与算法,采用分数阶思想对组内与组间样本协方差的特征值和奇异值进行重新估计,然后建立分数阶组内与组间散布矩阵,同时引入监督信息,构建了分数阶嵌入的多重集典型相关分析(FEGMCCA)理论框架。
推荐文章
边界监督多重集典型相关分析
典型相关分析
多重集典型相关分析
特征抽取
降维
监督学习
基于集成学习的多重集典型相关分析方法
特征提取
多重集典型相关分析
集成学习
模式识别
基于改进观测器的分数阶超混沌Chen系统广义同步
分数阶超混沌
Chen
系统
广义同步
观测器
多重集的保密计算及应用
密码学
两方安全计算
多重集
同态加密
编码方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 分数阶嵌入的广义多重集典型相关分析
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 模式识别 特征抽取 维数约减 多重集典型相关分析 分数阶
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 118-124
页数 7页 分类号 TP391.41
字数 3891字 语种 中文
DOI 10.13232/j.cnki.jnju.2015.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙权森 南京理工大学计算机科学与工程学院 112 1385 19.0 32.0
2 沈肖波 南京理工大学计算机科学与工程学院 3 20 1.0 3.0
3 管睿 南京理工大学计算机科学与工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (50)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模式识别
特征抽取
维数约减
多重集典型相关分析
分数阶
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导