基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs simultaneously. Parameter estimation is solved by using Quasi-Monte Carlo (QMC) method through iterative Newton-Raphson (NR) algorithm very well in terms of accuracy and stabilization, which is demonstrated by real binary salamander mating data analysis and simulation studies.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
Discrimination geochemical interaction effects on mineralization at the polymetallic Glojeh deposit,
Backward Elimination
Quadratic polynomial model
Miniature-scale changes
Ordinal–disordinal interaction effect
Akima's polynomial contour map
Immobile element
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Statistical Inference in Generalized Linear Mixed Models by Joint Modelling Mean and Covariance of Non-Normal Random Effects
来源期刊 统计学期刊(英文) 学科 医学
关键词 Generalized Linear Mixed Models MULTIVARIATE t DISTRIBUTION MULTIVARIATE Mixture NORMAL DISTRIBUTION Quasi-Monte Carlo NEWTON-RAPHSON Joint Modelling of Mean and COVARIANCE
年,卷(期) 2015,(6) 所属期刊栏目
研究方向 页码范围 568-584
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Generalized
Linear
Mixed
Models
MULTIVARIATE
t
DISTRIBUTION
MULTIVARIATE
Mixture
NORMAL
DISTRIBUTION
Quasi-Monte
Carlo
NEWTON-RAPHSON
Joint
Modelling
of
Mean
and
COVARIANCE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导