基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了进一步提高高分辨率遥感图像的分类精度及效率,融合支持向量机 SVM 及局部支持向量机KNNSVM算法,借助主动学习相关理论,提出了基于距离的局部支持向量机算法( DLSVM)。该算法通过对未标记样本和超平面之间的距离与预先设定的距离阈值相比较,判断是否需要进一步建立局部支持向量机KNNSVM来确定样本的类标。对实际的高分辨率遥感图像分类的实验结果显示:在合适的距离阈值与K值的设置下,该算法能够提高支持向量机SVM的分类精度,同时大大降低KNNSVM算法的时间消耗。
推荐文章
面向高分辨率遥感影像分类的分层策略研究
高分辨率遥感影像
易康软件
分层策略
精度分析
高分辨率遥感影像自动分类方法研究
高分辨率影像
遥感
土地利用
自动分类
一种高分辨率遥感图像视感知目标检测算法
高分辨率遥感图像
目标检测
目标语义关联抑制
卷积神经网络
一种快速高分辨率遥感影像分割算法
高分辨率
遥感影像
分割
区域合并
梯度
分水岭
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DLSVM算法的高分辨率遥感图像分类研究
来源期刊 中南民族大学学报(自然科学版) 学科 工学
关键词 高分辨率遥感图像分类 支持向量机 局部支持向量机
年,卷(期) 2015,(4) 所属期刊栏目 物理与电子信息科学
研究方向 页码范围 78-84
页数 7页 分类号 TP39
字数 5360字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王典洪 中国地质大学地球物理与空间信息学院 96 711 15.0 22.0
2 舒振宇 中南民族大学电信学院 12 71 4.0 8.0
6 周城 中南民族大学电信学院 19 92 6.0 9.0
7 海涛洋 中南民族大学电信学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (36)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(8)
  • 参考文献(3)
  • 二级参考文献(5)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分辨率遥感图像分类
支持向量机
局部支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中南民族大学学报(自然科学版)
季刊
1672-4321
42-1705/N
大16开
武汉市民院路5号
1982
chi
出版文献量(篇)
2596
总下载数(次)
4
总被引数(次)
11010
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导