基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的图分类算法由于支持度阈值选择过低导致频繁子模式规模过大,进而造成效率过低,阈值选择过高导致重要模式丢失而造成分类精度下降,如FSG和CEP方法。针对这些问题,提出将动态抽样策略引入图分类领域,在保持分类准确率的前提下通过顶点平均度的计算抽样选取代表性子模式,结合CEP所给出的频繁闭显露模型,设计出一种新的图特征(分类规则)提取方法,解决了CEP算法由于支持度阈值设置过低而导致的无法计算现象,大大提高了分类效率;并通过实验证明本文算法优于现有的一些主流算法。
推荐文章
基于图划分抽样算法的图表示学习
图划分
图表示学习
图抽样
图神经网络
基于BSMOTE和逆转欠抽样的不均衡数据分类算法
不均衡数据集
边界少数类样本合成过抽样技术
逆转欠抽样技术
多分类器集成
基于邻接图的空间分类算法的改进
空间分类
属性概化
相关分析
基于边缘分类能力的动态集成选择算法
动态集成选择
排序聚类
分类器能力
bagging
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动态抽样的图分类算法
来源期刊 南京师大学报(自然科学版) 学科 工学
关键词 图分类 动态抽样 顶点平均度 代表子模式
年,卷(期) 2015,(1) 所属期刊栏目 计算机科学
研究方向 页码范围 113-118,127
页数 7页 分类号 TP311.13
字数 5788字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹佟明 南京林业大学信息科学技术学院 41 1008 16.0 31.0
2 业宁 南京林业大学信息科学技术学院 83 805 16.0 24.0
3 尹婷婷 南京林业大学信息科学技术学院 2 7 2.0 2.0
4 刘俊焱 南京林业大学信息科学技术学院 6 32 4.0 5.0
5 周溜溜 南京林业大学信息科学技术学院 6 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (30)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (6)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图分类
动态抽样
顶点平均度
代表子模式
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师大学报(自然科学版)
季刊
1001-4616
32-1239/N
大16开
南京市宁海路122号南京师范大学
1955
chi
出版文献量(篇)
2319
总下载数(次)
4
相关基金
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导