基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
用支持向量机解决多分类问题是目前众多学者研究的热点话题.将已有的最小二乘支持向量分类-回归机算法推广到M空间进行了理论分析,在基于支持向量机的三分类算法基础上,提出了两个新的K(K>3)类多分类算法:一对一对多与一对一对一算法.对所有数据集进行分类时,在已有的多分类算法的基础上采用加校正的技巧:忽略准确率低的子分类器.数值实验证明了该技巧的有效性,并且校正后的准确率比校正前平均提高了4.61%.
推荐文章
基于密度聚类的支持向量机分类算法
支持向量机
密度聚类
ε-邻域
一种新的模糊支持向量机多分类算法
支持向量机
模糊支持向量机
一对多组合
隶属函数
多分类算法
啤酒瓶检测中多分类支持向量机算法的选择
支持向量机
多分类
核函数
视觉检测
性能评估
基于有序分割的支持向量机多分类方法
支持向量机
欧式距离
二叉树
模拟电路
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于三分类支持向量机的多分类算法的研究
来源期刊 中北大学学报(自然科学版) 学科 工学
关键词 多分类问题 1-v-1-v-1算法 1-v-1-v-r算法
年,卷(期) 2015,(5) 所属期刊栏目 自动化与计算机
研究方向 页码范围 520-525,532
页数 7页 分类号 TP181
字数 5184字 语种 中文
DOI 10.3969/j.issn.1673-3193.2015.05.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 翟嘉 北京科技大学天津学院 2 12 2.0 2.0
2 胡毅庆 北京科技大学天津学院 6 18 3.0 4.0
3 成小伟 北京科技大学天津学院 9 21 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (2)
参考文献  (11)
节点文献
引证文献  (7)
同被引文献  (39)
二级引证文献  (9)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
多分类问题
1-v-1-v-1算法
1-v-1-v-r算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中北大学学报(自然科学版)
双月刊
1673-3193
14-1332/TH
大16开
太原13号信箱
1979
chi
出版文献量(篇)
2903
总下载数(次)
7
总被引数(次)
15437
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导