基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于密度的孤立点检测算法LOF时间复杂度高的问题,通过优化数据对象邻域查询过程,提出一种两阶段的改进算法DBLOF,先采用DBSCAN聚类算法对数据集进行预处理,去除大部分的非孤立点,得到可能异常数据集,然后再利用LOF算法计算可能异常数据集中对象的局部异常因子并以此找出真正的孤立点。实验结果表明,改进算法能实现有效的局部孤立点检测,并能够降低算法时间复杂度。
推荐文章
一种基于数量关联的孤立点检测算法
数据挖掘
孤立点检测
数量关联
离散化
一种基于距离的聚类和孤立点检测算法
聚类算法
孤立点检测
距离
密度
基于互相关函数的孤立词端点检测算法
语音识别
端点检测
互相关函数
基于分化距离的离群点检测算法
离群点检测
分化距离
分化度
友邻点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度的孤立点检测算法改进研究
来源期刊 现代计算机:中旬刊 学科 工学
关键词 孤立点检测 LOF DBSCAN 聚类 数据挖掘
年,卷(期) 2015,(6) 所属期刊栏目
研究方向 页码范围 62-67
页数 6页 分类号 TP311.6
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高茂庭 上海海事大学信息工程学院 83 424 11.0 16.0
2 吕奔 上海海事大学信息工程学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
孤立点检测
LOF
DBSCAN
聚类
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代计算机:中旬刊
月刊
1007-1423
44-1415/TP
广州市海珠区新港西路135号中山大学园B
46-205
出版文献量(篇)
9067
总下载数(次)
3
总被引数(次)
0
论文1v1指导