We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly;this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values;however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these.