基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对运动想象脑电特征的提取与识别,提出了一种采用经验模态分解(EM D )提取脑电信号能量特征与幅值特征的分类识别方法。首先用时间窗对脑电信号进行细分;然后利用EMD方法对细分后的数据进行分解,取前三阶的固有模态函数分量(I M F ),提取能量和平均幅值差作为特征向量;最后,使用支持向量机对左右手运动想象进行分类识别。多次仿真试验数据表明,分类准确度达到88.57%,证明了该方法有效、适用。
推荐文章
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
想象左右手运动的脑电特征提取
脑机接口
脑电特征
独立分量分析
小波变换
神经网络
空域特征
基于多特征融合的运动想象脑电信号识别研究
脑电识别
特征融合
主成分分析
支持向量机
运动想象
基于IMF能量矩的脑电情绪特征提取研究
小波变换
经验模态分解
本征模态函数
能量矩
脑电信号
情感识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于E MD的运动想象脑电特征提取与识别
来源期刊 软件导刊 学科 工学
关键词 经验模态分解 特征提取 运动想象 支持向量机
年,卷(期) 2015,(1) 所属期刊栏目 软件理论与方法
研究方向 页码范围 44-46,47
页数 4页 分类号 TP301
字数 4323字 语种 中文
DOI 10.11907/rjdk.143770
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭晓金 重庆邮电大学通信学院 40 223 7.0 13.0
2 杨航 重庆邮电大学通信学院 3 16 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (344)
参考文献  (10)
节点文献
引证文献  (7)
同被引文献  (20)
二级引证文献  (3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(12)
  • 参考文献(1)
  • 二级参考文献(11)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
经验模态分解
特征提取
运动想象
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导