基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对于传统特征提取算法对运动想象脑电信号识别能力不足的问题,采用多元经验模式分解(multivariate empirical mode decomposition,MEMD)的方法用于分析运动想象的脑电信号.目前此方法主要应用在股票收益与宏观经济关系分析上,MEMD将标准经验模式拓展到多通道信号处理,适合于分析多元时间序列,并能够同时处理多通道的多尺度分解,进而在不同尺度下对多元时间序列的时间频率特性进行比较.通过Emotiv传感器对自定义的左右运动想象任务采集数据,采用MEMD提取相关脑电特征的边际谱,使用支持向量机对相关特征量进行分类.实验表明,此方法增强了定位脑电信号的频率信息的准确性,能够有效地提高对脑电信号的识别能力.
推荐文章
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
LMD算法与运动想象脑电信号的时频分析
LMD分解
运动想象
脑电信号
时频分析
基于多特征融合的运动想象脑电信号识别研究
脑电识别
特征融合
主成分分析
支持向量机
运动想象
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MEMD的运动想象脑电信号的特征提取与分析
来源期刊 重庆邮电大学学报(自然科学版) 学科 医学
关键词 多元经验模式分解(MEMD) 特征提取 脑电信号(EEG) 边际谱
年,卷(期) 2015,(3) 所属期刊栏目 计算机与自动化
研究方向 页码范围 386-391
页数 6页 分类号 TP18|R318
字数 3221字 语种 中文
DOI 10.3979/j.issn.1673-825X.2015.03.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗元 重庆邮电大学光电工程学院 192 1681 17.0 31.0
2 张毅 重庆邮电大学自动化学院 281 2390 21.0 36.0
3 周春雨 重庆邮电大学自动化学院 3 19 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (48)
参考文献  (12)
节点文献
引证文献  (11)
同被引文献  (44)
二级引证文献  (19)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2011(6)
  • 参考文献(4)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(5)
  • 引证文献(4)
  • 二级引证文献(1)
2018(5)
  • 引证文献(2)
  • 二级引证文献(3)
2019(13)
  • 引证文献(3)
  • 二级引证文献(10)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
多元经验模式分解(MEMD)
特征提取
脑电信号(EEG)
边际谱
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆邮电大学学报(自然科学版)
双月刊
1673-825X
50-1181/N
大16开
重庆南岸区
78-77
1988
chi
出版文献量(篇)
3229
总下载数(次)
12
总被引数(次)
19476
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导