原文服务方: 现代电子技术       
摘要:
提出一种粒子群算法(PSO)优化共同空间模式(CSP),结合离散小波变换(DWT)的特征提取算法(DWT-PSO-CSP).使用离散小波变换(DWT)系数均值、方差、能量均值作为时频特征,PSO-CSP算法优化频带作为CSP滤波器输入,得到最优频带的空域特征,即选取脑电信号(EEG)的最优频带.采用串行特征融合策略将二者融合为新的特征,输入支持向量机(C-SVM)分类器.使用BCI2005desc_IIIa中四类运动想象数据进行分类仿真研究,分类正确率最高达到91.25%.仿真结果表明该方法提高了分类器泛化能力,验证了该方法的有效性和实用性.
推荐文章
结合小波包和ICA的脑电信号特征波提取方法
小波包
独立分量分析
特征提取
脑电信号
基于小波包变换的肌电信号特征提取
小波包变换
特征提取
表面肌电信号
Elman神经网络
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
基于小波包变换的眼电信号特征提取及分类
眼电信号
小波包变换
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波-共空间模式的脑电信号特征提取
来源期刊 现代电子技术 学科
关键词 脑电信号 粒子群算法 共同空间模式 离散小波变换 能量均值 支持向量机
年,卷(期) 2018,(23) 所属期刊栏目 信号分析与图像处理
研究方向 页码范围 53-57
页数 5页 分类号 TN399-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2018.23.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 段锁林 常州大学机器人研究所 43 214 8.0 11.0
2 潘礼正 常州大学机器人研究所 12 24 3.0 4.0
3 李伟 常州大学机器人研究所 3 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (45)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号
粒子群算法
共同空间模式
离散小波变换
能量均值
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导