基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,基于bag-of-words模型的图像表示方法由于丢弃了视觉词汇之间的空间位置关系,且存在冗余信息,从而不能有效地表示该类图像。针对传统词袋模型视觉词汇之间相对位置关系利用不足,以及语义信息不明确的问题,提出采用基于支持区域的视觉短语来表示图像。通过支持区域探测得到图像中对分类起重要作用的支持区域,然后对支持区域上的视觉词进行空间建模得到视觉短语用于分类。最后在标准数据集UIUC-Sports8图像库和Scene-15图像库上进行对比实验,实验结果表明该算法具有良好的图像分类性能。
推荐文章
图像型火灾探测的支持向量机方法研究
火灾探测
支持向量机
图像二值化
模式识别
基于视觉注意的医学图像感兴趣区域提取
医学图像处理
感兴趣区域
视觉注意
显著区域
显著图
基于视觉注意机制的彩色图像显著性区域提取
显著性区域提取
视觉注意机制
分水岭
区域化空间注意力模型
基于显著区域的图像自动标注
图像自动标注
显著区域
SIFT特征
K-均值聚类
视觉词袋
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持区域探测的视觉短语的图像表示方法
来源期刊 计算机科学与探索 学科 工学
关键词 词袋 支持区域探测 视觉短语 图像表示
年,卷(期) 2015,(5) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 629-634
页数 6页 分类号 TP391.41
字数 4953字 语种 中文
DOI 10.3778/j.issn.1673-9418.1409026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张永 兰州理工大学计算机与通信学院 55 314 10.0 14.0
2 王国帅 兰州理工大学计算机与通信学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (35)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(8)
  • 参考文献(2)
  • 二级参考文献(6)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
词袋
支持区域探测
视觉短语
图像表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导