基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过互联网易获得同一对象的多个无约束的观测样本,针对如何解决无约束观测样本带来的识别困难及充分利用多观测样本数据信息提高其分类性能问题,提出基于低秩分解的联合动态稀疏表示多观测样本分类算法.该算法首先寻找到一组最佳的图像变换域,使得变换图像可以分解成一个低秩矩阵和一个相关的稀疏误差矩阵;然后对低秩矩阵和稀疏误差矩阵分别进行联合动态稀疏表示,以便充分利用类级的相关性和原子级的差异性,即使多观测样本的稀疏表示向量在类级别上分享相同的稀疏模型,而在原子级上采用不同的稀疏模型;最后利用总的稀疏重建误差进行类别判决.在CMU-PIE人脸数据库、ETH--80物体识别数据库、USPS手写体数字数据库和UMIST人脸数据库上进行对比实验,实验结果表明本方法的优越性.
推荐文章
基于低秩表示的非负张量分解算法
图像分类
低秩表示
非负
张量分解
基于约束低秩表示模型的联合半监督分类算法
低秩表示
约束矩阵
约束的低秩表示
半监督学习
样本分块稀疏表示判决式目标跟踪
粒子滤波
样本分块
稀疏表示
分类器
基于多任务联合稀疏表示的高光谱图像分类算法
多任务学习
稀疏表示
高光谱图像
图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于低秩分解的联合动态稀疏表示多观测样本分类算法
来源期刊 电子学报 学科 工学
关键词 模式识别 多观测样本分类 低秩矩阵恢复 联合动态稀疏表示
年,卷(期) 2015,(3) 所属期刊栏目 学术论文
研究方向 页码范围 440-446
页数 7页 分类号 TP391.41
字数 5798字 语种 中文
DOI 10.3969/j.issn.0372-2112.2015.03.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡正平 燕山大学信息科学与工程学院 160 1215 17.0 28.0
2 赵淑欢 燕山大学信息科学与工程学院 13 120 6.0 10.0
3 高红霄 燕山大学信息科学与工程学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (7)
同被引文献  (17)
二级引证文献  (4)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
模式识别
多观测样本分类
低秩矩阵恢复
联合动态稀疏表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导