原文服务方: 计算机应用研究       
摘要:
为了加速动态核磁共振成像的重建,并提取动态组织部分,提出一种基于将稀疏和低秩先验分离的重建方法。算法利用鲁棒主成分分析法,将动态MRI看做静态背景和动态组织的合成,建立相应的低秩矩阵和x-f域稀疏模型,再通过交替方向拉格朗日乘子法求解优化问题。与经典的k-t FOCUSS算法和k-t SLR算法进行对比,提出的算法能保证重建质量,即峰值信噪比(PSNR)、结构相似性(SSIM)等评价指标。实验结果表明,该算法能实现快速动态MRI的成像,减少运动伪影,同时更利于提取动态信息。
推荐文章
基于低秩和稀疏性先验知识的压缩感知图像重构
压缩感知
稀疏表示
总变差
低秩属性
基于稀疏与低秩的核磁共振图像重构算法
核磁共振成像
低秩
稀疏
赤池信息量准则
奇异值分解
全变分
联合低秩与稀疏先验的高光谱图像压缩感知重建
压缩感知
低秩先验
稀疏先验
增广拉格朗日乘子算法
基于稀疏与低秩矩阵分解的视频背景建模
背景建模
稀疏与低秩矩阵分解
增广拉格朗日乘子法
奇异值分解
块Lanczos
热启动
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏和低秩先验分离的快速动态MRI重建
来源期刊 计算机应用研究 学科
关键词 动态核磁共振成像 压缩感知 鲁棒主成分分析 低秩 稀疏
年,卷(期) 2016,(10) 所属期刊栏目 图形图像技术
研究方向 页码范围 3196-3200
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2016.10.072
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨晓梅 四川大学电气信息学院 59 273 8.0 13.0
2 吕雪霜 四川大学电气信息学院 3 10 2.0 3.0
3 陈思吉 四川大学电气信息学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (113)
参考文献  (16)
节点文献
引证文献  (5)
同被引文献  (17)
二级引证文献  (3)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(13)
  • 参考文献(3)
  • 二级参考文献(10)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(10)
  • 参考文献(3)
  • 二级参考文献(7)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
动态核磁共振成像
压缩感知
鲁棒主成分分析
低秩
稀疏
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导