原文服务方: 计算机测量与控制       
摘要:
为了解决并行磁共振成像过程的病态性和图像信噪比下降问题,降低重建过程中噪声放大和异常值的干扰造成的图像信噪比的损失,提出了一种基于正则化共轭梯度迭代的并行磁共振成像重建算法;该算法基于最小二乘理论,引入正则化,优化方程,进而进行迭代重建;采用了不同加速因子的人脑磁共振K空间欠采样数据以验证该算法的重建性能,仿真结果表明了该算法相较于最小二乘法,能较大限度地降低噪声对重建结果的干扰,具有信噪比更高、误差更小、成像效果更好等特征;重建图像质量得到了较好的改善,对临床诊断更具有适用性.
推荐文章
基于SENSE和GRAPPA的并行磁共振图像重建算法
并行磁共振图像重建
SENSE算法
GRAPPA算法
K空间
信噪比
线圈灵敏度
非局部稀疏表示正则化的磁共振图像重建
图像重建
压缩感知
核磁共振成像
非局部相似性
稀疏表示
基于感兴趣区约束的并行磁共振成像重建算法
并行磁共振成像
重建
SENSE
感兴趣区
基于凸集投影的稀疏磁共振图像重建新算法
磁共振成像
凸集投影
稀疏数据
笛卡尔采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于正则化迭代的并行磁共振图像重建算法
来源期刊 计算机测量与控制 学科
关键词 并行磁共振成像 图像重建 最小二乘法 迭代法 正则化
年,卷(期) 2015,(12) 所属期刊栏目 算法、设计与应用
研究方向 页码范围 4177-4179
页数 3页 分类号 R318
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2015.12.075
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王雷 中国科学院苏州生物医学工程技术研究所医学影像室 192 2018 26.0 36.0
10 常严 中国科学院苏州生物医学工程技术研究所医学影像室 7 15 2.0 3.0
11 陈蓝钰 中国科学院苏州生物医学工程技术研究所医学影像室 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (14)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (9)
二级引证文献  (3)
1987(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(2)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
并行磁共振成像
图像重建
最小二乘法
迭代法
正则化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导