基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统K-Means算法对初始聚类中心较为敏感,易收敛到局部最优的缺点,提出了一种粒子群算法优化的K-Means聚类算法。该算法在 K-Means 算法的基础上定义了一种不需迭代的分类方式,并将此方式与经典粒子群算法结合,利用粒子群算法强大的全局搜索能力,对初始聚类中心的选取进行优化,进而对数据集进行聚类。实验结果表明该算法与传统K-Means算法相比具有更高的聚类准确率。
推荐文章
一种改进的简化均值粒子群K-means聚类算法
粒子群优化算法
简化粒子群
邻域最优粒子
K-means聚类
聚类数
初始聚类中心
结合双粒子群和K-means的混合文本聚类算法
双粒子群
自调整惯性权值
信息交流
K-means算法
文本聚类
基于动态粒子群优化与K-means聚类的图像分割算法
图像分割
动态粒子群优化
K-means聚类
适应度方差
聚类算法
DPSOK
基于粒子群优化的模糊K-Means目标分类算法
粒子群
模糊
分类
K均值
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子群算法改进的K-Means聚类算法
来源期刊 微型电脑应用 学科 工学
关键词 聚类 K-Means算法 粒子群优化算法 PSKA算法
年,卷(期) 2015,(10) 所属期刊栏目
研究方向 页码范围 45-46
页数 2页 分类号 TP311
字数 2582字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高建瓴 贵州大学大数据与信息工程学院 39 126 7.0 9.0
2 葛青青 贵州大学大数据与信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (785)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
K-Means算法
粒子群优化算法
PSKA算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导