基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于经验模态分解(EMD)方法对染噪混沌时间序列进行预测时,模态混叠会降低预测精度和最大可预测时间.针对这一问题,将复数据经验模态分解(BEMD)引入到染噪混沌时间序列的预测,在BEMD过程中以高斯白噪声分解的内禀模态函数(IMF)为基函数来驱动染噪混沌信号的分解,从而减小模态混叠对混沌预测的影响.Lorenz混沌时间序列和Henon混沌时间序列的预测实例表明,本方法相对于EMD方法在预测精度和最大可预测时间上都有一定程度的提高.
推荐文章
混沌时间序列的LSSVM预测方法
混沌时间序列
相空间重构
最小二乘支持向量机
粒子群优化
预测模型
基于粒子滤波的混沌时间序列局域多步预测
局域线性预测
混沌时间序列
粒子滤波
多步预测
邻近点
预测误差
基于神经网络的混沌时间序列预测
人工神经网络
混沌时间序列
Lyapunov指数
基于小波分解与重构的混沌时间序列预测
小波分解与重构
混沌时间序列
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BEMD的染噪混沌时间序列预测方法
来源期刊 测控技术 学科 工学
关键词 混沌预测 模态混叠 复数据经验模态分解 高斯白噪声
年,卷(期) 2015,(11) 所属期刊栏目 数据采集与处理
研究方向 页码范围 44-47,51
页数 5页 分类号 TP183
字数 2389字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (19)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
混沌预测
模态混叠
复数据经验模态分解
高斯白噪声
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导