作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机用于变压器故障诊断时,其参数的选择会影响到诊断的准确度。为了提高支持向量机的精确度和效率,将粒子群算法和支持向量机相结合,提出了基于粒子群优化支持向量机的故障诊断方法。用粒子群算法实现对支持向量机惩罚因子及径向基核函数的寻优,从而提高支持向量机的分类性能。仿真结果表明,此方法能够有效提高变压器故障诊断的准确率。
推荐文章
基于改进PSO-SVM算法的油浸式变压器故障诊断
粒子群算法
支持向量机
变压器
故障诊断
用于变压器DGA故障诊断的改进PSO优化SVM算法研究
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
基于RF特征优选的WOA-SVM变压器故障诊断
变压器
故障诊断
特征优选
随机森林
鲸鱼优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-SVM的变压器故障诊断研究
来源期刊 机械工程与自动化 学科 工学
关键词 变压器 粒子群算法 支持向量机 故障诊断
年,卷(期) 2015,(4) 所属期刊栏目 工艺研究
研究方向 页码范围 141-142
页数 2页 分类号 TM41|TP277
字数 1693字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵德鑫 4 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (1880)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (5)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
变压器
粒子群算法
支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程与自动化
双月刊
1672-6413
14-1319/TH
大16开
太原市胜利街228号
22-117
1972
chi
出版文献量(篇)
9123
总下载数(次)
41
总被引数(次)
29895
论文1v1指导