基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
房地产价格近年来持续上涨,对于房价趋势的预测成为经济社会热点,但这些预测大都停留在定性分析阶段。从定量分析的角度入手,提出利用加入动量因子的BP神经网络算法建立数学模型,运用M atlab仿真实现房价预测。详细分析了BP神经网络学习算法过程,并加入动量因子以加快收敛、避免陷入局部最优。以山东济南为例,分析得出影响房价的7大主要因素,搜集2000-2012年数据,运用M atlab建立单隐含层的BP神经网络,通过训练网络,预测2014年该市房产均价。实验结果表明,该方法能在有限的数据条件下,对房价预测精准度达99.1%,为我国房地产业的可持续发展提供了科学的咨询和决策手段。
推荐文章
基于遗传算法和BP神经网络的房价预测分析
BP神经网络
遗传算法
优化
权值
房价
预测模型
引入动量项的变步长 BP 网络预测算法
BP 神经网络
动量项
步长
收敛
预测
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
基于遗传算法改进的BP神经网络房价预测分析
BP神经网络
遗传算法
价格预测
误差分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动量BP算法的神经网络房价预测研究
来源期刊 软件导刊 学科 工学
关键词 BP神经网络 学习算法 动量因子 房价仿真预测
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 59-61
页数 3页 分类号 TP3-05
字数 2333字 语种 中文
DOI 10.11907/rjdk.1431015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟晓景 山东科技大学信息科学与工程学院 32 151 7.0 11.0
2 王雅楠 山东科技大学信息科学与工程学院 1 13 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (146)
参考文献  (7)
节点文献
引证文献  (13)
同被引文献  (27)
二级引证文献  (17)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(9)
  • 参考文献(3)
  • 二级参考文献(6)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(6)
  • 引证文献(3)
  • 二级引证文献(3)
2019(15)
  • 引证文献(3)
  • 二级引证文献(12)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
BP神经网络
学习算法
动量因子
房价仿真预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
论文1v1指导