基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高轨迹分类和异常检测的准确率,充分利用轨迹特征信息,提出基于轨迹多特征的运动模式分类和异常检测方法。首先通过由粗到细的分层聚类来提取轨迹运动模式,每层分别采用 Bhattacharyya 距离和基于线段插值的改进 Hausdorff 距离衡量轨迹间运动方向和空间位置的相似度,并引入 Laplacian 映射以降低计算复杂度并自动确定每层聚类数目。在此基础上,同时考虑待测轨迹与运动模式在起点分布、位置和方向上的差异,通过学习的起点分布模型和基于位置距离和方向距离的分类器在线判断起点、全局和局部异常。实验验证了提出的轨迹聚类算法和异常检测方法在聚类准确率和异常识别率上更优于传统方法。
推荐文章
基于静态行为轨迹的异常特征检测技术
静态行为轨迹
变长n-gram
轨迹段
判决阈值
基于轨迹信息熵分布的异常轨迹检测方法
信息熵
相似度
轨迹聚类
代表性轨迹
异常检测
基于深度学习特征的异常行为检测
异常行为
深度学习特征
堆积去噪编码器
特征提取
稠密轨迹
基于SOM的行人异常轨迹检测
异常轨迹
视频监控
自组织网络
训练学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于轨迹多特征的运动模式学习及异常检测
来源期刊 计算机应用与软件 学科 工学
关键词 运动模式 异常检测 多特征 Laplacian 映射 位置距离 方向距离
年,卷(期) 2015,(3) 所属期刊栏目 人工智能与识别
研究方向 页码范围 200-204,265
页数 6页 分类号 TP391
字数 5777字 语种 中文
DOI 10.3969/j.issn.1000-386x.2015.03.047
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汤春明 哈尔滨工程大学信息与通信工程学院 19 138 6.0 11.0
2 浩欢飞 哈尔滨工程大学信息与通信工程学院 3 23 3.0 3.0
3 韩旭 哈尔滨工程大学信息与通信工程学院 8 36 4.0 5.0
4 聂美玲 哈尔滨工程大学信息与通信工程学院 4 26 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (5)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
运动模式
异常检测
多特征
Laplacian 映射
位置距离
方向距离
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导