基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
构造性形态学神经网络算法(CMNN)是一种数学形态学与传统的神经网络模型相结合的一种非线性神经网络,有较强的实用性。其训练算法根据形态学联想记忆而来,在测试过程中采用形态学算子将测试样本归类于训练得到的超盒之中。由于其测试过程无法正确地将落在超盒外的样本进行分类,后有人提出了一种基于模糊格的形态学神经网络(FL-CMNN),该算法用样本与超盒的隶属度判断提高了原CMNN算法的分类效果,但增加了算法的复杂程度且分类效果不稳定。这里提出一种基于构造性形态学神经网络算法的提升算法(LCMNN),该算法继承了原有的形态学算子运算速度快的优点且能够将落在超盒之外的样本进行准确地归类。数值实验表明,基于构造性形态学神经网络算法的提升算法(LCMNN)与其他几种算法相比,能够达到最好的分类效果,而且简单易行,计算时间少。
推荐文章
基于构造性神经网络的时间序列混合预测模行
时间序列预测
构造性神经网络
统计时间序列模型
产量预测
构造性神经网络在煤矿瓦斯预测中的应用
商空间
粒度计算
构造性神经网络学习方法
煤矿瓦斯预测
基于模糊数学和神经网络的数学形态学方法
数学形态学
模糊数学
神经网络
一种基于数学形态学细化的道路跟踪选择算法
二值化
形态学细化
线性跟踪
线性选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于构造性形态学神经网络的一种提升算法
来源期刊 计算机工程与应用 学科 工学
关键词 构造性形态学神经网络 提升算法 分类
年,卷(期) 2015,(18) 所属期刊栏目 数据库、数据挖掘、机器学习
研究方向 页码范围 140-143,198
页数 5页 分类号 TN911.72
字数 3728字 语种 中文
DOI 10.3778/j.issn.1002-8331.1309-0171
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 金炜东 西南交通大学电气工程学院 295 3889 30.0 49.0
2 吴旭东 西南交通大学电气工程学院 3 4 1.0 2.0
3 邓文豪 西南交通大学电气工程学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (532)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(2)
  • 二级参考文献(2)
1999(3)
  • 参考文献(2)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(10)
  • 参考文献(1)
  • 二级参考文献(9)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
构造性形态学神经网络
提升算法
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导