原文服务方: 计算机应用研究       
摘要:
基于视觉的智能车辆导航技术是通过对各种道路环境进行感知和理解,从而确定智能车辆的可行驶区域.针对实际道路环境的复杂性与多样性问题,提出了能够适应复杂环境的道路识别算法.首先,使用SLIC(simple linear iterative clustering)超像素分割算法对原始道路图像进行超像素分割,得到性质相同、尺寸均匀的超像素块;其次,基于超像素块使用K-means聚类算法提取出图像中道路区域与非道路区域的K维特征数据,并将提取的特征数据组成训练数据集;然后,针对经典双支持向量机(TSVM)训练时间久、无法求解逆矩阵的问题进行适当矫正,使用训练数据集训练矫正后的双支持向量机;最后,使用训练好的双支持向量机进行道路与非道路的分类识别.四组道路场景的实验结果表明,与基于滑动窗口和颜色、Gabor纹理特征的方法进行对比,该算法能够有效地识别具有阴影、水迹、障碍物等复杂环境下的道路;以人工标注结果为标准,前三组识别错误率低于0.1,第四组识别错误率低于0.15;与传统SVM相比,矫正的TSVM具有更高的效率,可以大大降低训练时间.该算法在复杂环境下道路识别错误率低,性能良好,为道路环境感知和理解提供了一种新的方法.
推荐文章
基于变异的k-means聚类算法
聚类
mk-means算法
变异
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
基于K-means聚类算法的复杂网络社团发现新方法
复杂网络
社团结构
K-means聚类算法
节点关联度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-means特征的复杂环境下道路识别算法
来源期刊 计算机应用研究 学科
关键词 复杂环境 超像素 白化 K-means 双支持向量机
年,卷(期) 2016,(2) 所属期刊栏目 图形图像技术
研究方向 页码范围 602-606
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2016.02.065
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张浩峰 南京理工大学计算机科学与工程学院 24 247 10.0 14.0
2 郝运河 南京理工大学计算机科学与工程学院 2 20 2.0 2.0
3 於敏杰 南京理工大学计算机科学与工程学院 2 35 2.0 2.0
4 易磊 南京理工大学计算机科学与工程学院 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (317)
参考文献  (10)
节点文献
引证文献  (10)
同被引文献  (38)
二级引证文献  (2)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(5)
  • 参考文献(0)
  • 二级参考文献(5)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(8)
  • 参考文献(1)
  • 二级参考文献(7)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(2)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
复杂环境
超像素
白化
K-means
双支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导