基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高对人体姿态的识别,提出了一种以人的姿态序列图像的轮廓为特征,包括轮廓的外接矩形的宽高比、形状复杂性变化率、离心率以及傅里叶描述子相结合的人体行为识别方法。首先运用自适应的混合高斯背景建模和形态学结合的方法,利用Canny算子进行边缘检测,实现目标人体轮廓的特征提取。然后采用基于质心边缘距傅里叶描述子与k-means聚类算法与SVM分类器结合的方法,对目标人体轮廓的参数建立具有13个特征值的一维的特征向量,并和RBF神经网络的分类效果进行对比。实验表明,SVM进行分类较为准确,且不需要进行多次的迭代训练,速度较快、识别性能也很好,相比于RBF神经网络而言。运用该方法可以让人体行为识别的正确率在91%以上,该方法简单可行。
推荐文章
基于角度序列特征的人体动作识别方法
动作识别
Kinect传感器
动态时间规整
DTW
角度序列
基于改进稠密轨迹与Fisher向量编码的人体行为识别方法
改进稠密轨
Fisher向量编码
人体行为识别
特征提取
量化
稠密光流
基于头肩模型的人体识别方法
人体识别
头肩模型
不变矩
最近邻分类器
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于傅里叶与局部特征结合的人体姿态识别方法研究
来源期刊 长春理工大学学报(自然科学版) 学科 工学
关键词 姿态识别 特征提取 傅里叶描述子 支持向量机(SVM)
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 82-87
页数 6页 分类号 TP391.4
字数 4613字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔广才 长春理工大学计算机科学技术学院 36 176 8.0 11.0
2 王春才 长春理工大学计算机科学技术学院 23 99 5.0 8.0
3 窦凤平 长春理工大学计算机科学技术学院 1 8 1.0 1.0
4 李哲 1 8 1.0 1.0
5 左思源 长春大学计算机科学技术学院 6 13 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (36)
参考文献  (8)
节点文献
引证文献  (8)
同被引文献  (18)
二级引证文献  (15)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(4)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(12)
  • 引证文献(2)
  • 二级引证文献(10)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
姿态识别
特征提取
傅里叶描述子
支持向量机(SVM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
长春理工大学学报(自然科学版)
双月刊
1672-9870
22-1364/TH
16开
长春市卫星路7089号
1978
chi
出版文献量(篇)
3546
总下载数(次)
14
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导