作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱遥感影像数据量大,针对该特点,为尽可能保留数据中有价值的信息,首先采用线性判别分析(Linear Discriminant Analysis,LDA)方法对高光谱遥感影像数据进行降维,接着应用径向基函数(Radial Basis Function,RBF)神经网络方法对其进行分类处理。实验结果表明,分类精度可达到70%以上,具有良好的分类效果,证明了该方法的可行性。
推荐文章
基于RBF神经网络的图形分类方法
图形分类
傅立叶变换
RBF神经网络
基于PCA+RBF的多光谱卫星遥感影像分类
主成份分析
RBF神经网络
多光谱
监督分类
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络的高光谱遥感影像降维及分类
来源期刊 国土与自然资源研究 学科 工学
关键词 径向基函数 线性判别分析 高光谱遥感 神经网络 分类
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 14-15,16
页数 3页 分类号 TP79
字数 2205字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周明 辽宁师范大学城市与环境学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (40)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (42)
二级引证文献  (0)
1968(1)
  • 参考文献(1)
  • 二级参考文献(0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
径向基函数
线性判别分析
高光谱遥感
神经网络
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国土与自然资源研究
双月刊
1003-7853
23-1216/N
大16开
哈尔滨市香坊区哈平路103号
14-125
1979
chi
出版文献量(篇)
4174
总下载数(次)
7
论文1v1指导