基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了在保证计算精度的前提下使模型简化并便于计算,要尽量少地用对模型影响较大、相互独立的特征变量进行建模。在进行特征变量选择时,既要考虑选择对主因素有重要影响的变量,也要排除各影响变量间的多重相关性的干扰。首先建立各特征变量同费用的灰色关联度,根据关联度的大小对众多特征变量进行排序,排除关联度相对极小并同其他因素关联度差异明显的特征变量,减少次要影响因素对估算结果造成的干扰;其次,应用基于特征权值的模糊动态聚类方法,并突出近期数据的重要性,对影响因素进行聚类分析,排除影响因素间多重相关性的干扰。论文通过实例分析进行了验证。
推荐文章
改进的灰色聚类方法及应用
灰色系统
灰色聚类
白化权函数
基于统计特征加权的模糊聚类方法及其应用
统计特征
模糊C-均值聚类
图像二值化
权值
采用机器学习的聚类模型特征选择方法比较
特征选择
聚类模型
机器学习
递归特征消除算法
Boruta方法
基于模糊聚类和关联矩阵的协同客户选择方法
客户协同产品开发
协同客户
模糊聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 特征变量的灰色模糊动态聚类选择方法
来源期刊 雷达科学与技术 学科 工学
关键词 灰色关联分析 模糊聚类 变量选择 特征加权
年,卷(期) 2016,(3) 所属期刊栏目
研究方向 页码范围 305-310
页数 6页 分类号 TN957
字数 4353字 语种 中文
DOI 10.3969/j.issn.1672-2337.2016.03.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (36)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
灰色关联分析
模糊聚类
变量选择
特征加权
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
雷达科学与技术
双月刊
1672-2337
34-1264/TN
大16开
安徽省合肥市9023信箱60分箱
2003
chi
出版文献量(篇)
1971
总下载数(次)
3
总被引数(次)
10892
论文1v1指导