基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Hadoop framework emerged at the right moment when traditional tools were powerless in terms of handling big data. Hadoop Distributed File System (HDFS) which serves as a highly fault-tolerance distributed file system in Hadoop, can improve the throughput of data access effectively. It is very suitable for the application of handling large amounts of datasets. However, Hadoop has the disadvantage that the memory usage rate in NameNode is so high when processing large amounts of small files that it has become the limit of the whole system. In this paper, we propose an approach to optimize the performance of HDFS with small files. The basic idea is to merge small files into a large one whose size is suitable for a block. Furthermore, indexes are built to meet the requirements for fast access to all files in HDFS. Preliminary experiment results show that our approach achieves better performance.
推荐文章
Hadoop2.0平台概述
Hadoop
YARN
并行计算
单点失效
Hadoop平台下突发水污染应急预案并行化处置
突发水污染事件
应急预案
Hadoop
MapReduce
CBR
The enhanced element enrichment in the supercritical states of granite–pegmatite systems
Granites
Pegmatites
Supercritical state
Extreme element enrichment
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Efficient File Accessing Techniques on Hadoop Distributed File Systems
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 HDFS HADOOP INDEX Small FILES
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 88-90
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HDFS
HADOOP
INDEX
Small
FILES
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导