基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
环境失配问题严重影响着说话人识别的性能,这一问题在非平稳噪音条件下表现得更为显著.为了增强说话人识别在环境失配条件下的鲁棒性,基于稀疏表示提出了一种高维鲁棒语音特征的生成方法,并针对上述高维语音特征的稀疏特性提出了一个说话人模型.在该说话人识别方法中,首先以优化的联合基作为稀疏表示的基,在此基础上对信号进行分解,用于从带噪语音中剥离噪音成分,并从中提取语音信号的内蕴时频结构;之后在此基础上提出了一种鲁棒的稀疏谱语音特征,并根据该特征的高维稀疏特性给出了基于混合k-means的说话人模型.实验结果显示,与基于梅尔倒谱系统特征的基线系统相比,提出的说话人识别方法在NIST SRE-2003语料库条件下的等错误率下降了28.16%,在Chinese-863语料库和不同信噪比(5 dB和0 dB)的非平稳汽车噪音环境下的等错误率分别下降了9.84%和14.21%.上述结果表明,在环境失配情况下,提出的说话人识别方法的性能明显优于基于梅尔倒谱系数特征的基线系统.
推荐文章
基于稀疏图的鲁棒谱聚类算法
谱聚类
稀疏表示
图拉普拉斯
L1正则化
内点法
基于稀疏编码的鲁棒说话人识别
说话人识别
稀疏表示
判别字典
形态成分分析
基于稀疏表示的鲁棒性说话人识别系统
说话人识别
稀疏表示
多状态训练
谱减法
基于GMM聚类的鲁棒性i向量说话人确认
说话人识别
高斯混合模型
巴氏距离
支持向量机
线性判别分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏谱的鲁棒说话人识别
来源期刊 河南大学学报(自然科学版) 学科 工学
关键词 说话人识别 环境失配 鲁棒性 稀疏谱
年,卷(期) 2016,(5) 所属期刊栏目 自动化基础理论与信息技术
研究方向 页码范围 553-556,566
页数 5页 分类号 TP391
字数 3363字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李捷 河南大学软件学院 51 394 10.0 17.0
2 游大涛 河南大学软件学院 5 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
说话人识别
环境失配
鲁棒性
稀疏谱
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南大学学报(自然科学版)
双月刊
1003-4978
41-1100/N
大16开
河南省开封市明伦街85号
36-27
1934
chi
出版文献量(篇)
2535
总下载数(次)
17
总被引数(次)
14463
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导