基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Slope One 协同过滤算法被广泛应用于个性化推荐系统中。标签是一种描述项目特性的重要形式,针对Slope One 算法推荐精度不足的问题,将标签信息融合到 Slope One 算法当中。同时参考 k 近邻算法思想,选取阈值过滤后的 k 近邻项目参与平均评分偏差计算,提高计算效率的同时增加预测精度。使用评分相似度和标签相似度作为权重修正线性回归模型。通过线性加权融合预测结果,进一步提升推荐质量。将算法应用于 MovieLens 数据集,与传统加权 Slope One 算法相比,平均绝对偏差下降4.8%,召回率和准确率分别提高32.1%和26.3%。
推荐文章
基于用户相似性的加权Slope One算法
个性化推荐系统
Slope One
相似性
用户活跃度
评分预测
融合改进加权Slope One的协同过滤算法
加权Slope One
项目相似度
协同过滤
矩阵填充
数据稀疏性
基于耦合关系的加权Slope One算法
协同过滤
Slope One算法
项目耦合相似度
用户耦合相似度
Slope One-BI算法的改进及其在大数据平台的并行化
Slope One-BI算法
聚类
Spark
推荐算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合标签相似度的k近邻Slope One算法
来源期刊 重庆邮电大学学报(自然科学版) 学科 工学
关键词 协同过滤 推荐系统 标签相似度 k近邻 Slope One算法
年,卷(期) 2016,(4) 所属期刊栏目 大数据,云计算
研究方向 页码范围 518-524
页数 7页 分类号 TP391
字数 5317字 语种 中文
DOI 10.3979/j.issn.1673-825X.2016.04.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张鹏 中国科学院遥感与数字地球研究所 220 1605 21.0 32.0
5 葛小青 中国科学院遥感与数字地球研究所 9 32 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (453)
参考文献  (7)
节点文献
引证文献  (9)
同被引文献  (27)
二级引证文献  (10)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(9)
  • 引证文献(3)
  • 二级引证文献(6)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
协同过滤
推荐系统
标签相似度
k近邻
Slope One算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆邮电大学学报(自然科学版)
双月刊
1673-825X
50-1181/N
大16开
重庆南岸区
78-77
1988
chi
出版文献量(篇)
3229
总下载数(次)
12
总被引数(次)
19476
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导