基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对支持向量机(SVM)在网络故障诊断中应用存在的参数设置和诊断模型复杂的问题,提出一种基于小生境粒子群优化的SVM解决方案。算法在进行参数寻优的同时考虑支持向量个数,实现对诊断模型复杂度的优化,并采用小生境粒子群算法进行求解,提高算法跳出局部最优的能力。在DARPA数据集上的实验表明本文提出的方法能够有效提高诊断模型的泛化性和诊断速度。
推荐文章
基于粒子群算法和支持向量机的故障诊断研究
最小二乘支持向量机
粒子群算法
故障诊断
全局最优
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
基于粒子群优化支持向量机的电梯故障诊断
电梯
故障诊断
最优小波包
粒子群算法
支持向量机
基于支持向量机集成学习的网络故障诊断方法
支持向量机
二重扰动
集成学习
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小生境粒子群支持向量机的网络故障诊断
来源期刊 火力与指挥控制 学科 工学
关键词 网络故障诊断 支持向量机 小生境粒子群 支持向量数目
年,卷(期) 2016,(2) 所属期刊栏目 工程实践
研究方向 页码范围 158-161,165
页数 5页 分类号 TP393
字数 3874字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张亚梅 52 56 4.0 7.0
2 张正本 17 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (41)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (14)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络故障诊断
支持向量机
小生境粒子群
支持向量数目
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
论文1v1指导