基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
舰用发动机是一个复杂的大系统,由于受到海洋恶劣气候的影响,其故障发生的概率大大增加,因此,对舰用发动机故障诊断进行研究具有重大实际意义。以舰用发动机的主泵轴承为例,提出了基于小波包和支持向量机的故障诊断方法。首先采用振动加速度传感器获取轴承的振动信号,然后对采集数据进行多层小波包分解,求各频带信号能量,形成各种故障模式下的特征向量。将形成的故障特征向量训练集输入到支持向量机,通过训练建立诊断分类器,并运用测试数据对建立的诊断分类器进行测试。实验结果表明,该方法可以很好地实现舰用发动机故障诊断效能,具有很好的工程应用前景。
推荐文章
基于支持向量机的发动机故障诊断
支持向量机
主分量分析
小波包
故障诊断
基于功率谱包络能量和SVM的舰用发动机故障诊断方法
舰用发动机
功率谱包络能量
主泵轴承
支持向量机
故障诊断
基于小波包和支持向量机的齿轮故障诊断
小波包
支持向量机
齿轮
故障诊断
基于小波包分解和支持向量机的机械故障诊断方法
小波包分解
能量谱
支持向量机
故障诊断
多故障分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包和支持向量机的舰用发动机故障诊断
来源期刊 火力与指挥控制 学科 工学
关键词 支持向量机 小波包 故障诊断 特征向量
年,卷(期) 2016,(6) 所属期刊栏目 研究简报
研究方向 页码范围 181-184
页数 4页 分类号 TP211+.2
字数 3621字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔建国 沈阳航空航天大学自动化学院 87 573 15.0 20.0
2 于明月 沈阳航空航天大学自动化学院 32 50 3.0 3.0
3 王桂华 6 25 3.0 4.0
4 高阳 3 7 2.0 2.0
5 刘宝胜 沈阳航空航天大学自动化学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (228)
参考文献  (11)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
支持向量机
小波包
故障诊断
特征向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
总被引数(次)
34280
论文1v1指导