基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于模型的分解发展较快,但存在负功率、体散射过估计、未充分利用相干矩阵等问题,考虑到基于模型分解的优点,采用Singh分解提取极化信息,同时用散射角、极化熵和极化总功率进行补充,再利用SVM对山东禹城地区全极化Radarsat-2数据进行分类。为验证该方法的有效性,将其与H/α/A-Wishart和Yamaguchi-SVM两种分类方法进行比较。结果表明,该方法分类效果较好,总体精度分别提高了6.4%和3.48%。
推荐文章
基于目标分解的极化SAR图像SVM监督分类
极化合成孔径雷达
图像分类
目标分解
支持向量机
Wishart迭代
模糊C-均值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征值和Singh分解的全极化Radarsat-2图像分类
来源期刊 地理空间信息 学科 地球科学
关键词 全极化SAR图像分类 Singh分解 Cloude分解 极化总功率 SVM
年,卷(期) 2016,(5) 所属期刊栏目 3S 技术应用
研究方向 页码范围 60-63
页数 4页 分类号 P237
字数 2864字 语种 中文
DOI 10.3969/j.issn.1672-4623.2016.05.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (2)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (7)
二级引证文献  (1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
全极化SAR图像分类
Singh分解
Cloude分解
极化总功率
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理空间信息
月刊
1672-4623
42-1692/P
大16开
湖北省武汉市武昌中南一路50号湖北省测绘局地理信息局航测楼二楼
2003
chi
出版文献量(篇)
5778
总下载数(次)
16
总被引数(次)
25892
论文1v1指导