作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现井下救生舱动力电池SOC (State Of Charge)的估算,将支持向量机(SVM)的方法应用于电池SOC的估算中.为了得到合适的惩罚因子C和核函数K,利用粒子群算法来优化支持向量机;建立了支持向量机模型,对井下救生舱的电池剩余电量进行预测.实验结果表明:采用粒子群优化支持向量机的方法具有较高的准确度,有一定的实用价值.
推荐文章
基于神经网络的电池SOC估算及优化方法
锂离子电池
SOC
神经网络
粒子群算法
RMSProp
基于细菌觅食特征改进粒子群算法优化SVM模型参数研究
细菌觅食特征
粒子群算法
支持向量机
故障预测
采用粒子群优化的 SVM 算法在数据分类中的应用
数据分类
支持向量机
粒子群优化
Iris 数据集
惩罚参数
高斯参数
基于RTS-IEKPF算法的锂电池SOC估算
锂电池
SOC估算
RTS-IEKPF
粒子滤波
最优平滑
实验验证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群算法优化SVM在电池SOC估算中的应用
来源期刊 机械工程与自动化 学科 工学
关键词 电池SOC 粒子群优化 SVM 救生舱
年,卷(期) 2016,(2) 所属期刊栏目 质量监测与故障诊断
研究方向 页码范围 154-155
页数 2页 分类号 TD77+4
字数 1918字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (52)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (10)
二级引证文献  (1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电池SOC
粒子群优化
SVM
救生舱
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程与自动化
双月刊
1672-6413
14-1319/TH
大16开
太原市胜利街228号
22-117
1972
chi
出版文献量(篇)
9123
总下载数(次)
41
总被引数(次)
29895
论文1v1指导