基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提取强背景噪声下滚动轴承故障特征信息,提出了一种多小波预处理的约束独立分量分析(MW-cICA)算法.该算法首先对输入信号进行多小波降噪处理,提高信号信噪比;然后应用约束独立分量分析方法提取故障特征.与传统的小波独立分量分析(W-ICA)方法相比,该方法具有如下优势:1)由于多小波具有单小波所不能同时具有的正交性、对称性、紧支性和高阶消失矩等特点,因而对信号的降噪效果更加明显;2)引入参考信号作为约束条件,使得算法直接收敛于期望信号,提高了运算效率;3)建立基于故障模型的参考信号能够更加接近于真实期望信号,提高算法性能.仿真结果表明,多小波比单小波具有更好的降噪效果,基于故障振动模型的约束独立分量分析比传统的FastICA算法运算效率更高.将该算法运用于滚动轴承内圈故障试验中,可成功提取出内圈故障特征信号.
推荐文章
自适应遗传算法在滚动轴承故障诊断中的应用
自适应遗传算法
高阶模糊BP神经网络
小波分析
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
KNN-朴素贝叶斯算法的滚动轴承故障诊断
KNN
贝叶斯算法
故障诊断
滚动轴承
小波包
煤烟引风机滚动轴承的故障诊断
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 MW-cICA算法在滚动轴承故障诊断中的应用
来源期刊 现代制造工程 学科 工学
关键词 多小波预处理的约束独立分量分析 故障模型 参考信号 滚动轴承 故障诊断
年,卷(期) 2016,(10) 所属期刊栏目 设备设计/诊断维修/再制造
研究方向 页码范围 126-134
页数 9页 分类号 TH17
字数 4454字 语种 中文
DOI 10.16731/j.cnki.1671-3133.2016.10.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李迅波 电子科技大学机械电子工程学院 54 443 12.0 18.0
2 黄波 电子科技大学机械电子工程学院 16 34 3.0 5.0
3 廖强 电子科技大学机械电子工程学院 5 30 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (69)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(5)
  • 参考文献(4)
  • 二级参考文献(1)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多小波预处理的约束独立分量分析
故障模型
参考信号
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代制造工程
月刊
1671-3133
11-4659/TH
大16开
北京市西城区核桃园西街36号301A
2-431
1978
chi
出版文献量(篇)
9080
总下载数(次)
14
总被引数(次)
50123
论文1v1指导