基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统目标显著性检测算法存在显著区域弱化、最显著的中心点被抑制、背景差对比度低等问题,提出一种新的整形目标显著性检测算法。算法首先利用灰度不一致算子作为局部处理手段,刻画图像局部纹理的非均匀性,使得最显著的中心点亮度提高;其次,利用改进的 FT 算法,建立一种新的全局量化方法,使得显著区域增强;再次,为了滤除孤立显著区的影响,算法提出一种空间权重表达法,对所提显著图进行线性处理,提高整体显著区与背景间的对比差。最后的仿真实验中,与 FT、Itti 等6种典型的目标显著性检测算法相比,该算法不仅具有更好的识别准确性和稳定性,而且所提算法的精确率和召回率等客观指标也具有较强的优势,从而表明该算法是切实可行的。
推荐文章
基于颜色和纹理特征的显著性检测算法
模式识别
显著性检测
颜色对比度
纹理特征
二维信息熵
基于全局颜色对比的显著性目标检测
全局颜色对比
显著性图
条件随机场
显著性目标检测
一种基于图像特征稀疏约束的显著性检测算法
显著性检测
特征选择
特征融合
稀疏约束
线性回归
基于HVS的多尺度显著性检测算法
人类视觉系统
多尺度
主成分分析
显著性检测
图像分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于整形特征的目标显著性检测算法研究
来源期刊 计算机应用与软件 学科 工学
关键词 目标显著性检测 灰度不一致算子 空间权重
年,卷(期) 2016,(11) 所属期刊栏目 算 法
研究方向 页码范围 204-207
页数 4页 分类号 TP391
字数 4036字 语种 中文
DOI 10.3969/j.issn.1000-386x.2016.11.048
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡玉兰 沈阳理工大学信息科学与工程学院 62 243 9.0 11.0
2 片兆宇 沈阳理工大学信息科学与工程学院 5 12 2.0 3.0
3 黄梨 沈阳理工大学信息科学与工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (4)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标显著性检测
灰度不一致算子
空间权重
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导