作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机中核函数的选择对大坝监控模型预测精度具有较大影响.基于支持向量机结构风险最小化以及小波框架理论,提出用小波核函数代替高斯径向基核函数(RBF),并采用粒子群算法对支持向量机的参数进行寻优,得到一种新的大坝变形预测模型.针对某实际工程,基于监测数据,将该模型与采用RBF核函数的支持向量机模型以及统计回归模型做对比,结果显示采用小波核函数的支持向量机模型模拟精度更高,泛化能力更强.
推荐文章
复高斯小波核函数的支持向量机研究
复高斯小波核函数
Mercy条件
支持向量机
非线性系统辨识及预测
基于小波的支持向量机算法研究
小波核
混沌
支持向量机
泛化能力
基于最小二乘支持向量机的大坝变形预测研究
大坝变形
最小二乘支持向量机
优化
预测
高斯小波支持向量机的研究
高斯小波核
支持向量机
核函数方法
短期负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波核函数和支持向量机的大坝变形预测
来源期刊 人民长江 学科 工学
关键词 小波分析 支持向量机 核函数 粒子群算法 预测模型
年,卷(期) 2016,(17) 所属期刊栏目 运行管理
研究方向 页码范围 98-101
页数 4页 分类号 TV698
字数 2888字 语种 中文
DOI 10.16232/j.cnki.1001-4179.2016.17.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨贝贝 河海大学水文水资源与水利工程科学国家重点实验室 6 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (587)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (14)
二级引证文献  (5)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波分析
支持向量机
核函数
粒子群算法
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
人民长江
月刊
1001-4179
42-1202/TV
大16开
武汉市解放大道1863号
38-22
1955
chi
出版文献量(篇)
12471
总下载数(次)
23
总被引数(次)
55454
论文1v1指导