原文服务方: 计算机应用研究       
摘要:
稀疏表示分类方法(sparse representation-based classifier,SRC)在模式识别领域展现了巨大的潜力。基于稀疏表示分类的鉴别投影(SRC steered discriminative projection,SRC-DP)则是建立在SRC分类准则基础上的降维方法,其在投影空间中最大化类间重构误差与类内重构误差的比值。针对SRC-DP中提取的特征之间具有冗余信息,从而影响其鉴别能力的问题,提出SRC-ODP(SRC oriented orthogonal discriminative projection)方法,利用投影矩阵的正交约束取代SRC-DP中的约束条件,其优越性为:a)正交投影矩阵具有更高的特征提取效率;b)所提取的特征具有更强的鉴别能力。在AR和Extended Yale B数据库上的实验表明,该方法可以使SRC达到更好的分类结果。
推荐文章
稀疏表示保持的鉴别特征选择算法
特征选择
稀疏表示
重构残差
l2,1范数
基于p.d.f特征的分层稀疏表示在图像分类中的应用
图像分类
分层稀疏表示
空间金字塔最大池化
图像表示
基于字典优化的稀疏表示的视频镜头分类
稀疏表示
字典优化
视频镜头分类
基于稀疏表示的脑电(EEG)情感分类
脑电信号
稀疏表示
情感
加速近邻算法
正交匹配算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 SRC-OD P:面向稀疏表示分类器的正交鉴别投影
来源期刊 计算机应用研究 学科
关键词 稀疏表示分类 正交鉴别投影 特征提取
年,卷(期) 2016,(10) 所属期刊栏目 图形图像技术
研究方向 页码范围 3165-3168
页数 4页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2016.10.065
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙怀江 南京理工大学计算机科学与工程学院 81 1003 16.0 28.0
2 张国庆 南京理工大学计算机科学与工程学院 5 9 1.0 3.0
3 赵家成 南京理工大学计算机科学与工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏表示分类
正交鉴别投影
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导