基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
机器学习中的监督学习算法需要用有标记样本训练分类模型。而收集训练样本,并进行分类的过程,需要耗费大量人力物力以及时间。因此,如何高效率地完成图像分类一直是业内研究的热点。提出了一种基于霍夫森林和半监督学习的图像分类算法,能用较少的样本训练分类器,并在分类的过程中不断获取新的训练样本。并对部分训练结果加以人工标注,该方法有效提高了标注效率。利用COREL数据对该算法进行了实验验证,结果表明,该算法可以利用少量的训练样本,得到令人满意的标注精确度,提高人工效率。
推荐文章
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
基于半监督学习的Web页面内容分类技术研究
Web页面内容分类
半监督学习
半监督分类
智能优化
Dirichlet分布
基于半监督学习的一种图像检索方法
基于内容的图像检索
半监督学习
图像特征
相关度
查准率—查全率曲线
一种基于半监督学习的应用层流量分类方法
流量分类
半监督学习
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于霍夫森林和半监督学习的图像分类
来源期刊 计算机工程与应用 学科 工学
关键词 监督学习 霍夫森林 半监督学习 直推式支持向量机 图像分类
年,卷(期) 2016,(20) 所属期刊栏目 热点与综述
研究方向 页码范围 20-25,51
页数 7页 分类号 TP391.41
字数 6809字 语种 中文
DOI 10.3778/j.issn.1002-8331.1602-0013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯瑞 2 5 2.0 2.0
2 王力冠 复旦大学计算机科学技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (3)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
监督学习
霍夫森林
半监督学习
直推式支持向量机
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导