基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
用户偏好模型的构建是推荐成功与否的基础.通过产品特征属性与用户特征属性的映射,建立用户偏好模型,引入神经网络集成的机器学习方法来模拟偏好模型.为了提高用户偏好模型的泛化能力,提出用负相关学习算法并行训练成员神经网络,采用差分进化算法对成员网络进行优化,从而有效降低网络集成的泛化误差,提高模型精度.通过Movielens数据仿真,并与单个BP神经网络、GASEN、核密度神经网络集成等模型实验结果进行对比分析,其均方差明显减少,验证了差分进化神经网络集成的用户偏好模型具有较好的泛化能力,能客观反映用户偏好,从而取得更好的推荐效果.
推荐文章
基于改进差分进化算法的RBF神经网络优化方法
改进差分进化算法
径向基函数神经网络
非线性系统逼近
差分进化算法和神经网络的车牌自动识别模型
差分进化
神经网络
车牌识别
图像处理
神经网络和自适应差分进化在云计算的应用研究
神经网络
自适应差分进化
云计算
载荷预测
文化差分进化算法及其在化工过程建模中的应用
文化算法
差分进化
补偿模糊神经网络
软测量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 差分进化神经网络集成的用户偏好模型构建
来源期刊 微型机与应用 学科 工学
关键词 个性化推荐 用户偏好 负相关 神经网络集成 差分进化
年,卷(期) 2016,(8) 所属期刊栏目 人工智能
研究方向 页码范围 44-47
页数 4页 分类号 TP39
字数 3820字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张大斌 华中师范大学信息管理学院 47 853 15.0 28.0
5 杨凤萍 华中师范大学信息管理学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (30)
参考文献  (6)
节点文献
引证文献  (8)
同被引文献  (43)
二级引证文献  (3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
个性化推荐
用户偏好
负相关
神经网络集成
差分进化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导