作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文基于径向基函数(radial basis function,RBF)神经网络非线性映射能力强、学习收敛快的特点,结合降雨量预测时全年各月降水量对待测月份降水量的相关性,提出一种多项式与径向基函数神经网络混合预测模型,并利用甘肃陇南各林区1944-2011年月降水量为样本对模型进行验证.仿真结果表明:在相同的样本空间下,本文预测模型与一般神经网络相比较,在降水量丰富的月份预测值与实际值误差更小,且收敛速度更快.
推荐文章
基于神经网络模型的降水量预测研究
神经网络
降水量
预测
基于SVM-CEEMDAN-BiLSTM模型的日降水量预测
日尺度降水量
预测
深度学习
BiLSTM网络
基于Elman和多项式模型电力负荷短期预测
Elman
多项式拟合
电力系统负荷数据
MATLAB
相对误差
基于BP神经网络时间序列模型的降水量预测
降水量
时间序列
BP神经网络
降水量预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多项式与神经网络的陇南林区降水量预测模型
来源期刊 现代农业科技 学科 地球科学
关键词 降水量 多项式预测 陇南林区
年,卷(期) 2016,(14) 所属期刊栏目 资源与环境科学
研究方向 页码范围 201-203,212
页数 4页 分类号 P426
字数 5905字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘丽 17 16 2.0 3.0
2 高超 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (65)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(17)
  • 参考文献(1)
  • 二级参考文献(16)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(4)
  • 二级参考文献(2)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
降水量
多项式预测
陇南林区
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代农业科技
半月刊
1007-5739
34-1278/S
大16开
安徽省合肥市
26-41
1972
chi
出版文献量(篇)
76497
总下载数(次)
131
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导