基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven’t had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Development of an Alternative Method for the Sovereign Credit Rating System Based on Adaptive Neuro-Fuzzy Inference System
来源期刊 美国运筹学期刊(英文) 学科 医学
关键词 CREDIT RATING Logistic Regression (LR) Neural Networks (ANN) Adaptive NEURO-FUZZY INFERENCE System (ANFIS) Comparative Studies
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 41-55
页数 15页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CREDIT
RATING
Logistic
Regression
(LR)
Neural
Networks
(ANN)
Adaptive
NEURO-FUZZY
INFERENCE
System
(ANFIS)
Comparative
Studies
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国运筹学期刊(英文)
半月刊
2160-8830
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
329
总下载数(次)
0
总被引数(次)
0
论文1v1指导