基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Volunteer Computing(VC)has been successfully applied to many compute-intensive scientific projects to solve embarrassingly parallel computing problems.There exist some efforts in the current literature to apply VC to data-intensive(i.e.big data)applications,but none of them has confirmed the scalability of VC for the applications in the opportunistic volunteer environments.This paper chooses MapReduce as a typical computing paradigm in coping with big data processing in distributed environments and models it on DHT(Distributed Hash Table)P2P overlay to bring this computing paradigm into VC environments.The modelling results in a distributed prototype implementation and a simulator.The experimental evaluation of this paper has confirmed that the scalability of VC for the MapReduce big data(up to 10 TB)applications in the cases,where the number of volunteers is fairly large(up to 10K),they commit high churn rates(up to 90%),and they have heterogeneous compute capacities(the fastest is 6 times of the slowest)and bandwidths(the fastest is up to 75 times of the slowest).
推荐文章
基于Big6的全科医生数字化学习
全科医生
Big6
数字化学习
基于语义的Data Cube数字水印技术
数字水印
语义
数据立方体
版权
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
基于迭代式MapReduce的FCM算法实现
MapReduce
FCM算法
迭代
云计算
变压器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Scalability of Volunteer Computing for MapReduce Big Data Applications
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 VOLUNTEER Computing(VC)has been successfully applied to MANY
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 39-41
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
VOLUNTEER
Computing(VC)has
been
successfully
applied
to
MANY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导