作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高短期负荷预测精度,提出了一种基于遗传算法优化概率神经网络(PNN)的短期预测模型.首先对负荷数据异常值进行辨识与修正,建立PNN短期预测模型,在此基础上引入遗传算法(GA),优化概率神经网络的平滑因子,改善了PNN模型的性能,优化后的PNN短期预测模型预测精度得到明显的提高.实例预测结果证实了该方法的有效性.
推荐文章
基于遗传算法的短期负荷组合预测模型
负荷预测
组合预测模型
改进的遗传算法
基于遗传算法优化参数的支持向量机短期负荷预测方法
遗传算法
支持向量机
参数优化
负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法优化PNN的短期负荷预测
来源期刊 电气开关 学科 工学
关键词 概率神经网络 平滑因子 遗传算法 短期负荷预测
年,卷(期) 2017,(1) 所属期刊栏目 设计与研究
研究方向 页码范围 49-51,56
页数 4页 分类号 TM72
字数 1814字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭钟华 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (98)
参考文献  (14)
节点文献
引证文献  (5)
同被引文献  (22)
二级引证文献  (19)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(5)
  • 参考文献(1)
  • 二级参考文献(4)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(12)
  • 引证文献(1)
  • 二级引证文献(11)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
概率神经网络
平滑因子
遗传算法
短期负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气开关
双月刊
1004-289X
21-1279/TM
大16开
沈阳市于洪区巢湖街10号
8-65
1963
chi
出版文献量(篇)
3086
总下载数(次)
9
论文1v1指导