为了解决多尺度遥感图像变化检测在降噪时丢失大量高频信息及单一像素孤立性的问题,提出了一种双树复小波变换DT-CWT(Dual-tree Complex Wavelet Transform)和马尔可夫随机场MRF(Markov Random Field)相结合的非监督遥感图像变化检测算法,首先采用DT-CWT对差异图像进行多尺度分解,并根据MRF模型分割算法提取高频区域的变化特征,然后进行相应层的高、低频重构,再对重构后的各层建立MRF模型并根据贝叶斯最大后验概率准则MAP(Maximum A Posterior)进行最终分割,最后对各层分割结果进行求交融合,得到最终的变化检测结果掩膜图.对比实验结果表明,该方法在去除杂点和噪声的同时能够较好地保留高频信息,并且边缘检测更加平滑,具有较高的变化检测精度和很好的鲁棒性.