基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
机载LiDAR技术为地表三维数据的获取和DEM、DSM的构建提供了有利的条件.由于建筑物和植被遮挡等原因,造成了点云的缺失,形成区域的空洞,给地表建模带来不便,需要对LiDAR点云数据进行插值处理以修复缺失的数据.对径向基函数(RBF)神经网络构建插值模型进行了研究,利用该模型对点云中缺失的空洞区域进行修复.通过利用一部分采样点对RBF神经网络进行学习训练,得到模型中参数的具体值,然后利用这些参数值对空洞区进行插值.实验验证了RBF神经网络模型的有效性及插值精度.
推荐文章
基于增强径向函数神经网络的错误定位方法
错误定位
程序调试
径向基神经网络
正交实验设计
软件测试
基于径向基函数神经网络的智能嗅觉系统
智能嗅觉系统
径向基函数网络
气体传感器阵列
选择性
边界模糊图像的径向基函数神经网络分割方法研究
边界模糊图像
径向基函数神经网络
图像分割
机器视觉
径向基函数神经网络的再学习算法及其应用
径向基函数神经网络
再学习算法
训练样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于径向基函数神经网络的机载LiDAR点云空洞填补方法
来源期刊 南京师范大学学报(工程技术版) 学科 地球科学
关键词 空间插值 LiDAR点云 空洞填补 RBF 神经网络
年,卷(期) 2017,(3) 所属期刊栏目 计算机工程
研究方向 页码范围 57-62
页数 6页 分类号 P208
字数 3861字 语种 中文
DOI 10.3969/j.issn.1672-1292.2017.03.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (117)
参考文献  (17)
节点文献
引证文献  (5)
同被引文献  (24)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(2)
  • 参考文献(1)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(12)
  • 参考文献(5)
  • 二级参考文献(7)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
空间插值
LiDAR点云
空洞填补
RBF
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师范大学学报(工程技术版)
季刊
1672-1292
32-1684/T
大16开
南京市宁海路122号
2001
chi
出版文献量(篇)
1491
总下载数(次)
3
总被引数(次)
7734
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导