基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
肺结节CT图像的相似性检索是计算机辅助诊断系统中最重要的部分,目前常用的检索方法通常匹配精度低,检索速度慢.针对上述问题,提出一种新的基于视觉信息与征象标签的双概率超图哈希算法,使用两层结构提高肺结节图像的检索精度:在第一层,将肺结节影像视觉信息和标签信息分别构建概率超图,最优划分概率超图得到哈希码;在第二层,使用结节图像的视觉特征、标签特征和第一层得到的哈希码来训练哈希函数.在检索时,对待检图像通过训练好的哈希函数进行0,1编码,与数据集中图像比较汉明距离,返回相似结节图像.对9种不同征象类型的3422张肺结节CT图像进行实验,并与不同哈希算法进行比较,结果表明,提出的方法在哈希码长为32位时可以达到最高精度90.18%,有效提高了检索精度,可以给医生提供客观的辅助诊断.
推荐文章
基于有监督哈希的肺结节CT图像检索
肺结节
图像检索
多特征提取
有监督哈希
自适应权重
分类
基于CT图像的肺结节检测与识别
肺结节
CT图像
区域生长法
多尺度高斯滤波器
模糊C均值聚类算法
支持向量机分类器
肺磨玻璃结节CT征象对早期肺腺癌的诊断价值
肺磨玻璃结节
肺腺癌
浸润前病变
浸润性腺癌
体层摄影术,X线计算机
基于医学征象和卷积神经网络的肺结节CT图像哈希检索
肺结节
医学征象
卷积神经网络
主成分分析
语义特征
哈希函数
自适应
图像检索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于视觉信息与征象标签的肺结节CT图像检索
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 肺结节图像 多特征 概率超图 哈 希 图像检索
年,卷(期) 2017,(6) 所属期刊栏目 人工智能:从知识发现到机器学习
研究方向 页码范围 1043-1051
页数 9页 分类号 TP391
字数 4654字 语种 中文
DOI 10.13232/j.cnki.jnju.2017.06.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 强彦 太原理工大学计算机科学与技术学院 88 402 11.0 16.0
2 赵涓涓 太原理工大学计算机科学与技术学院 54 283 8.0 14.0
3 宋云霞 太原理工大学计算机科学与技术学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (4)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
肺结节图像
多特征
概率超图
哈 希
图像检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导