基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于计算机视觉的疲劳检测具有低侵入性、低成本的优点,然而光照变化、面部表情、复杂背景等仍然对检测率造成很大的影响.以卷积神经网络为代表的深度学习以其较强的特征提取能力和鲁棒性在模式识别领域取得了成功的应用.本文提出了一种基于级联卷积神经网络(CNN)结构的疲劳检测算法.首先训练第1级网络实现人眼与非人眼的分类,使网络充分学习人眼特征,当输入目标图像时,人眼区域能快速从第一级网络特征图中分离出来;然后将人眼图像传送给第2级网络检测眼部特征点位置,计算眼睛张开度并以此判断测试者眼睛状态,构造疲劳检测模型;最后根据连续多帧的眼睛状态序列,判断测试者是否处于疲劳状态.在检测误差为5%时,眼部4个特征点的平均检测正确率为93.10%,单点检测正确率最高可达97.14%.测试结果表明,在本文提出方法下眼睛的清醒和疲劳状态有明显的不同,证明本文提出的方法有效可行,具有较好的应用前景.
推荐文章
基于多尺度池化卷积神经网络的疲劳检测方法研究
视觉特征分析
多尺度池化
卷积神经网络
疲劳检测
人脸检测
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于级联卷积神经网络的疲劳检测
来源期刊 光电子·激光 学科 工学
关键词 疲劳检测 卷积神经网络(CNN) 级联结构 特征点检测
年,卷(期) 2017,(5) 所属期刊栏目 测量·检测
研究方向 页码范围 497-502
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.16136/j.joel.2017.05.0485
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (35)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(7)
  • 参考文献(3)
  • 二级参考文献(4)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
疲劳检测
卷积神经网络(CNN)
级联结构
特征点检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光电子·激光
月刊
1005-0086
12-1182/O4
大16开
天津市南开区红旗南路263号
6-123
1990
chi
出版文献量(篇)
7085
总下载数(次)
11
总被引数(次)
60345
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导