基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的社区发现算法往往时间复杂度较高,K-means算法作为聚类算法且时间复杂度较低可为社区发现提供新思路,但K-means算法的原始应用场景为数值环境与社交网络不符,且自身存在初始中心节点选取敏感等原有问题,针对上述问题本文在下面三个方面进行了优化:第一,结合最短路径及共同邻居信息重新定义距离度量;第二,结合了节点的度和节点距离因素进行初始中心节点选取;第三,在K-means算法结果的基础上进行基于贪心策略以模块度为目标的层次聚类优化.通过实验表明:改进的K-means算法能够很好地应用于社区发现,得到的社区发现结果有较高质量.
推荐文章
一种改进的K-means聚类算法
聚类分析
K-means算法
离群点数据
一种基于密度的k-means聚类算法
聚类
k-means
信息熵
近邻密度
孤立点
一种改进K-means聚类的FCMM算法
K-means聚类
萤火虫
最大最小距离
Tent映射
混沌搜索
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于K-means改进的社区发现算法
来源期刊 科研信息化技术与应用 学科
关键词 社区发现 K-means算法 模块度
年,卷(期) 2017,(5) 所属期刊栏目 技术
研究方向 页码范围 11-18
页数 8页 分类号
字数 5040字 语种 中文
DOI 10.11871/j.issn.1674-9480.2017.05.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于建军 中国科学院计算机网络信息中心 10 71 4.0 8.0
2 欧璇 中国科学院计算机网络信息中心 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (27)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1977(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社区发现
K-means算法
模块度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科研信息化技术与应用
双月刊
1674-9480
11-5943/TP
北京市海淀区中关村南四街4号
chi
出版文献量(篇)
501
总下载数(次)
5
论文1v1指导