基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Imaging and computer vision systems offer the ability to study quantitatively on human physiology. On contrary, manual interpretation requires tremendous amount of work, expertise and excessive processing time. This work presents an algorithm that integrates image processing and machine learning to diagnose diabetic retinopathy from retinal fundus images. This automated method classifies diabetic retinopathy (or absence thereof) based on a dataset collected from some publicly available database such as DRIDB0, DRIDB1, MESSIDOR, STARE and HRF. Our approach utilizes bag of words model with Speeded Up Robust Features and demonstrate classification over 180 fundus images containing lesions (hard exudates, soft exudates, microaneurysms, and haemorrhages) and non-lesions with an accuracy of 94.4%, precision of 94%, recall and f1-score of 94% and AUC of 95%. Thus, the proposed approach presents a path toward precise and automated diabetic retinopathy diagnosis on a massive scale.
推荐文章
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
Bag of Words算法框架的研究
Bag
of
Words算法
语义特征
视觉单词
视觉词汇表
基于"bag of Words"的视频匹配方法
视频匹配
视觉关键词
bag of words
倒排索引
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automated Diabetic Retinopathy Detection Using Bag of Words Approach
来源期刊 生物医学工程(英文) 学科 医学
关键词 DIABETIC RETINOPATHY BAG of Words Speeded Up Robust Features Hard Exu-dates Soft EXUDATES MICROANEURYSMS Haemorrhages and SVM
年,卷(期) 2017,(5) 所属期刊栏目
研究方向 页码范围 86-96
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DIABETIC
RETINOPATHY
BAG
of
Words
Speeded
Up
Robust
Features
Hard
Exu-dates
Soft
EXUDATES
MICROANEURYSMS
Haemorrhages
and
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学工程(英文)
月刊
1937-6871
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
252
总下载数(次)
1
总被引数(次)
0
论文1v1指导