基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在传统垃圾邮件过滤技术的基础上,提出一种融合LDA主题模型和Word2vector模型的文档向量,并将LDA主题模型得到的不同维度的文档——主题矩阵、Word2vector模型得到的词向量以及融合的文档向量作为支持向量机和逻辑回归的特征输入,通过8组对照实验的效果分析得到:融合的文档向量结合支持向量机模型的准确率最高,能够对垃圾邮件进行精准过滤,降低了垃圾邮件对个人以及社会的危害.
推荐文章
垃圾邮件过滤技术研究综述
垃圾邮件
贝叶斯过滤
人工免疫
发送方策略框架
垃圾邮件过滤技术研究
电子邮件
垃圾邮件
垃圾邮件过滤
贝叶斯
检测病毒与垃圾邮件融合的分层合作过滤方案
垃圾邮件
智能推理机
病毒
防护技术
垃圾邮件过滤的贝叶斯方法综述
垃圾邮件
贝叶斯分类
向量空间模型
朴素贝叶斯分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合LDA与Word2vector的垃圾邮件过滤方法研究
来源期刊 网络安全技术与应用 学科
关键词 LDA主题模型 Word2vector 垃圾邮件 支持向量机
年,卷(期) 2017,(3) 所属期刊栏目 安全模型、算法与编程
研究方向 页码范围 73-75
页数 3页 分类号
字数 3577字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (84)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LDA主题模型
Word2vector
垃圾邮件
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导