基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Teaching machine to understand needs to design an algorithm for the machine to comprehend documents. As some traditional methods cannot learn the inherent characters effectively, this paper presents a new hybrid neural network model to extract sentence-level summarization from single document,and it allows us to develop an attention based deep neural network that can learn to understand documents with minimal prior knowledge. The proposed model composed of multiple processing layers can learn the representations of features.Word embedding is used to learn continuous word representations for constructing sentence as input to convolutional neural network. The recurrent neural network is also used to label the sentences from the original document, and the proposed BAM-GRU model is more efficient. Experimental results show the feasibility of the approach. Some problems and further works are also present in the end.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Text Understanding with a Hybrid Neural Network Based Learning
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Deep LEARNING Convolutional NEURAL NETWORK RECURRENT NEURAL NETWORK Word EMBEDDING GATED RECURRENT unit
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 26-28
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Deep
LEARNING
Convolutional
NEURAL
NETWORK
RECURRENT
NEURAL
NETWORK
Word
EMBEDDING
GATED
RECURRENT
unit
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导